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Abstract. Qualitative variables take symbolic values, such as hot, shoe, Europe

or France. Sometimes, the values may be arranged in layers or levels of detail.

For instance, the variable place_of_origin takes as level-1 values European, Af-

rican... as level-2 values French, German... as level-3 values Californian,

Texan... The paper describes a hierarchy, a mathematical construct among these

variables. The confusion resulting when using a value instead of another is de-

fined, as well as the closeness to which object o fulfills predicate P. Other op-

erations among and properties of hierarchical values are derived. Hierarchies

are compared with ontologies. Hierarchies find use in measuring linguistic re-

latedness or similarity. Hierarchical variables abound and are commonly used,

often with suggestive string values, without fully realizing or exploiting its

properties. We deal with arbitrary hierarchies. Examples are given.

1 Introduction

A datum is a relational entity. Nothing is a datum itself; i.e. a context1 is required.

This thesis is especially true for qualitative data. Notice that many works on qualita-

tive data processing usually omit the problem under consideration context. In con-

trast, we use the hierarchies to measure similarity and dissimilarity between qualita-

tive values, attempting to keep the context. To some extent, the notion of hierarchy

provides an adequate tool for qualitative data analysis, processing and classification,

because the hierarchies encapsulate the (sometimes ordered) relations between parti-

tions of the dataset and therefore easily maintain the problem context.

What wearing apparel do we wear for rainy days? Raincoat is a correct answer;

umbrella is a close miss; belt a fair error, and typewriter a gross error. What is closer

to an apple, a pear or a caterpillar? Can we measure these errors and similarities?

How related or close are these words? Some preliminary definitions follow.

1 The notion of context depends on particular environment (subject domain, representation

space...) into which the data are embedded. In turn the relatedness between data elements

depends on the context. For example, the pale and beige could be much closed (to indistin-

guishable) in one context while in another they should be far distanced. Subsequently this

paper concerns not only with the problem to appropriately define the closeness of data ele-

ments but also to take into consideration the properties of the representation space. This can

be observed as a context-oriented approach to qualitative data processing (see also §1.3).



Element set. A set2 E whose elements are explicitly defined. §3 Example: {red, blue,

white, black, pale}.

Ordered set. An element set whose values are ordered by a < (“less than”) relation.

§ Example: {very_cold, cold, warm, hot, very_hot}.

Covering. K is a covering for set E if K is a set of subsets siË E, such that Ç si = E.

§ Every element of E is in some subset si Í K. If K is not a covering of E, we can

make it so by adding a new sj to it, named “others”, that contains all other elements of

E that do not belong to any of the previous si.

Exclusive set. K is an exclusive set if si Æ sj = Å, for every si, sj Í K. § Its elements

are mutually exclusive. If K is not an exclusive set, we can make it so by replacing

every two overlapping si, sj Í K with three: si - sj, sj - si, and si Æ sj.

Partition. P is a partition of set E if it is both a covering for E and an exclusive set.

Qualitative variable. A single-valued variable that takes symbolic values. § Its

value cannot be a set.4 By symbolic we mean qualitative, as opposed to numeric,

vector or quantitative variables.

     A symbolic value v represents a set E, written v ´ E, if v can be considered a

name or a depiction of E. § Example: Pale ´ {white, yellow, orange, beige}.

1.1 Hierarchy

For an element set E, a hierarchy H of E is another element set where each element

ei is a symbolic value that represents either a single element of E or a partition, and Çi

{ri | ei ´ ri} = E (The union of all sets represented by the ei is E). § Example (Hierar-

chy H1): for E = {Canada, USA, Mexico, Cuba, Puerto_Rico, Jamaica, Guatemala,

Honduras, Costa_Rica}={a, b, c, d, e, f, g, h, i}, a hierarchy H1 is {North_America,

Caribbean_Island, Central_America}={H1
1, H1

2, H1
3}, where North_America ´

{Canada, USA, Mexico}; Caribbean_Island ´ {English_Speaking_Island, Span-

ish_Speaking_Island}={H1
21, H1

22}; English_Speaking_Island ´ {Jamaica}; Span-

ish_Speaking_Island ´ {Cuba, Puerto_Rico}; Central_America ´ {Guatemala,

Honduras, Costa_Rica}.

     Hierarchies make it easier to compare qualitative values belonging to the same

hierarchy (§3), and even to different hierarchies (procedure sim in [11]).

     A hierarchical variable is a qualitative variable whose values belong to a hierar-

chy (The data type of a hierarchical variable is hierarchy). § Example: pla-

ce_of_origin that takes values from H1. Note: hierarchical variables are single-valued.

2 Perhaps infinite, perhaps empty.
3 The symbol § means: end of definition.
4 Variable, attribute and property are used interchangeably. An object may have an attribute

(Ex: weight) while others do not: the weight of blue does not make sense, as opposed to

saying that the weight of blue is unknown or not given. A variable (color, height) describes

an aspect of an object; its value (blue, 2 Kg) is such description or measurement.



Thus, a value for place_of_origin can be North_America or Mexico, but not {Can-

ada, USA, Mexico}, although North_America ´ {Canada, USA, Mexico}.

1.2 Notation

The sets represented by each element of a hierarchy form a tree under the relation

subset. Example: for H1, such tree is given in Figure 1.

H1

H1
1 H1

2 H1
3

a b c

H1
21 H1

22

d e f g h i

Fig. 1. The tree induced by hierarchy H1.

     We will also write a hierarchy such as H1 thus: {North_America ´ {Canada USA

Mexico} Caribbean Island ´ {Spanish_Speaking_Island ´ {Cuba Puerto_Rico}

English_Speaking_Island ´{Jamaica} } Central_America ´ {Guatemala  Honduras

Costa_Rica} }.

father_of (v). In a tree representing a hierarchy (such as H1), the father_of a node is

the node from which it hangs. § Similarly, the sons_of (v) are the values hanging

from v. The nodes with the same father are siblings. § Similarly, grand_father_of,

brothers_of, aunt, ascendants, descendants... are defined, when they exist. § The

root is the node that has no father.§

1.3 Previous related work

     CYC [6] was an early attempt to build the concept tree (an ontology) for common

concepts. Clasitex [2] finds the themes of an article written in Spanish or English,

performing a task equivalent to disambiguation of a word into its different senses. It

uses the concept tree, and a word (words lie outside the context tree) suggests the

topic of one or more concepts in the tree. A document that talks about Cervantes,

horses and corruption will be classified (indexed) in these three nodes in the tree. In

[3] [4], each agent possesses its own ontology of concepts, but must map these into

natural language words for communication [11]. Thus LIA, a language for agent

interaction [3], has an ontology comparator COM, that maps a concept from one

ontology into the closest corresponding concept of another ontology. COM achieves

communication without need of a common or standard ontology; it is used in sim of

§3.4. Ontologies’ relation to hierarchies will be further elaborated here.

     The set of data items that we have to process is of course finite (Cf. footnote 1).

First of all, we have to ask about the nature of the representation space, i.e., we need



to know whether the data can be regarded as “values” of certain “variables” (Cf. §1),

and whether these variables have certain properties: are we at liberty to embed the

data into some “space”, and to perform certain operations on them?

     Traditionally [12] [13], the representation space is regarded as a metric space with

some “exotic” or ad hoc distance (e.g., ultrametric distance to measure the proximity

among members of a hierarchy; see §2). However, this requires a proof that such a

distance meets the needs of the classification problem under consideration. Since, in

general, the data of a problem consist at best of distances in the ordinary sense, the

requirement is to obtain the “exotic distance” from an “ordinary distance.” The inter-

mediate data conversion often makes it difficult for any algorithms to define and

exploit errors in using one data element instead of another; this is crucial for many

domains involving qualitative variables (§3). Another problem with this conversion is

its significant computational cost. A solution for these problems herein developed is

to avoid the requirement of the measure to be a “distance” (even an “exotic” dis-

tance), defining so-called similarity or dissimilarity (confusion) functions on data

elements of arbitrary nature in a manner similar to the human handling of these

qualitative variables (it is hard to expect that they first define a distance to distinguish

the low_cost and high_cost of goods). This is the main goal of the present paper, its

novelty and its unique contribution (§3).

2 Theoretical Background

     In this section we put forward some formal definitions previously developed and

extensively commented in [7] [9] [15]. We should underline that the notion of ul-

trametric distance introduced in the following (§2.3) is accepted as “natural” measure

of the hierarchical elements [12] [13] but is useless as well as any other distance

within our context-oriented approach. Thus, it should be revised and replaced in §3.

2.1 Partitions of a finite set

     Two elements x and y of E are equivalent in a partition P if they belong to the

same class si; this is denoted by xPy. §
     Let P(E) be the set of all partitions of E; an order relation among the members of

P(E), denoted by <, can be defined thus: for any two partitions P and P’, P<P’ iff

xPyxP’y. Partition P is said to be finer than P’; it has more classes than P’.§
     A lattice structure for P(E) can be based on the order relation. For every pair of

partitions P and P’ there is a least upper bound (l.u.b.) PÙP’, and greatest lower

bound (g.l.b.) PØP’. §
Let us call Pk a partition of k classes where k is the level of Pk. A partition P’ is said

to cover a partition P if and only if P’ results from combining two classes of P. A

chain in the lattice is a sequence of partitions in order, e.g. (P1,P2,...,Pj) where P1< P2

<...< Pj; the term is understood in the sense of an elementary chain in graph theory.



2.2 Hierarchies

Let E be a set of n elements, Â(E) the set of all subsets of E and P(E) the lattice of

the partitions defined by the order relation P < Q. Let CH be a complete chain in

the lattice, i.e. a chain linking the finest partition Pn, of n elements, to the coarsest

partition P1=E. Now we can give two equivalent definitions of a hierarchy.
     (1) A hierarchy is a set of partition classes constituting a complete chain, including

in particular the set E itself and the n subsets formed by the elements of E. §
     The passage from level k to level k-1 on CH corresponds to combining two

classes. However, several levels can be passed over. Let P and Q be two non-

consecutive partitions on CH, so that the classes of Q are either those of P or combi-

nations of two or more classes of P. This leads to another direct definition.

     (2) A hierarchy is a subset H of Â(E) such that (1) EÍH, (2) if x and y are ele-

ments of E, then {x},{y}ÍH, (3) if h and h’ are elements of H, then either hÆh’=Å or

hÆh’¸Å, in which case either hËh’ or h’Ëh. § Example: See Figure 1.

2.3 Ultrametrics

A partial ordering of the elements of a hierarchy can be based on the inclusion rela-

tion and can be made a total ordering by the process of ascending a complete chain

CH. In general, the same hierarchy can be defined by several different chains; thus if

E={a,b,c,d,e,f}, then for the hierarchy H formed by the subsets {a}, {b}, {c}, {d},
{e}, {f} with h1=E, h2={a,b,c,d}, h3={e,f} and h4={a,b,c}, we can use three chains

CH1, CH2 and CH3, with their nodes numbered 0,1,2,3,4 as follows:
  CH1 a,b,c,d,e,f   abc,d,e,f    abc,d,ef    abcd,ef    abcdef

 CH2 a,b,c,d,e,f   abc,d,e,f    abcd,e,f    abcd,ef   abcdef

CH3       a,b,c,d,e,f   a,b,c,d,ef   abc,d,ef   abcd,ef   abcdef

0 1 2 3 4

     Two elements of E occur in the same subset at a given node of CH, this being a

partition of E. Given the chain, the node numbers characterize each pair of elements

of E. We can now show how they can be used to define a special kind of distance.

2.3.1 Ultrametric distance

If i, j and k are three elements of a set E, the ultrametric distance d is d fined as a

function of E³E in R+ as follows: d(i,i)=0, d(i,j)=d(j,i), d(i,j) ¢ max[d(i,k),d(j,k)]. §
     So we might define a distance between elements of E by means of a chain of par-

titions, and it is clear that this is an ultrametric distance in the sense just defined. It is

also clear that infinity of ultrametric distances can be defined so as to be consistent

with the order imposed by the chain CH, and we must remember that the same hierar-

chy can be specified by several different such chains. Conversely, an indexed hier-

archy can be considered, given an ultrametric distance.



3 Properties and Functions on Hierarchies

I ask for a European car, and I get a German car. Is there an error? Now, I ask for a

German car, and a European car comes. Can we measure this error? Can we syste-

matize or organize these values? Hierarchies of symbolic values allow measuring the

similarity between these values, and the error when one is used instead of another.

3.1 Confusion in using r instead of s, for a hierarchy H

If r, s Í H, then the confusion in using r instead of s, written conf(r, s), is: (1) conf (r,

r) = conf (r, s) = 0, where s is any ascendant of r; (2) conf (r, s) = 1 + conf (r, fa-

ther_of(s)) § To measure conf, count the descending links from r to s, the replaced

value. conf is not a distance, nor ultradistance. To differentiate, we prefer to use

confusion instead of other linguistic terms like relatedness or closeness.

     Example (Hierarchy H2): conf(r, s) for H2 of Figure 2 is given in Table 1:

LIVE

BEING
ANIMAL PLANT

MAMMAL Snake CITRIC Pine

Cat Lemon

Fig. 2. A hierarchy H2 of live beings.

Table 1. conf(r, s): Confusion in using r instead of s for the live beings of H2.

s
Conf Live b. Animal Plant Mam. Snake Citric Pine Cat Lemon

Live b. 0 1 1 2 2 2 2 3 3

Animal 0 0 1 1 1 2 2 2 3

Plant 0 1 0 2 2 1 1 3 2

r Mam. 0 0 1 0 1 2 2 1 3

Snake 0 0 1 1 0 2 2 2 3

Citric 0 1 0 2 2 0 1 3 1

Pine 0 1 0 2 2 1 0 3 2

Cat 0 0 1 0 1 2 2 0 3

Lemon 0 1 0 2 2 0 1 3 0

The confusion thus introduced resembles reality and catches the hierarchy semantics.

For example, conf (animal, live_being) = 0: if they ask you for a live being and you

give them an animal, the error of using animal instead of live being is 0, since all

animals are live beings. Giving a live being when asked for an animal has error 1;

conf (live_being, animal) = 1. The confusion among two brothers (say, dog and cat)

is 1; using a son instead of the father produces conf=0; using the father instead of the



son makes conf = 1. conf is not a symmetric property. Using general things (see row

‘live being’) instead of specific things produces high errors. Using specific things

(see row ‘lemon’) instead of general things produces low errors. The table’s lower

triangular half has smaller errors than its upper triangular half5.

3.1.1 Confusion in using r instead of s, for hierarchies that are bags

Now consider a hierarchy H (of an element set E) but composed of bags (unordered

collection where repetitions are allowed) instead of sets.

For bags, the similarity in using r instead of s, simb (r, s), is: (1) simb (r, r) = simb (r,

any ascendant_of (r)) = 1; (2) if s = some son_of(r), simb (r, s) = number of elements

of E Æ r Æ s / number of elements of E Æ r = relative popularity of s in r6; (3) simb (r,

s) = simb (r, some son_of(r)) * simb (that son_of(r)), s). §
     The confusion in using r instead of s, conf’(r, s), is 1 – simb (r, s). §
Example: If baseball_player = {pitcher catcher base_player ´ {baseman baseman

baseman} field_player ´ {fielder fielder fielder} shortstop} then (a) conf’ (fielder,

baseball_player) = 1 – simb (fielder, baseball_player) = 0; (b) conf’ (baseball_pla-

yer, fielder) = 1 – 1/3 = 2/3; (c) conf’ (baseball_player, left_fielder) = 8/9 (a left_fiel-

der is one of those three fielders); (d) conf’ (base_player, fielder) = 2/3.

3.1.2 Confusion in using r instead of s, for hierarchies that are lists

For hierarchies that are lists (ordered sets, for instance Temp = {icy, cold, normal,

warm, hot, burning}), the confusion in using r instead of s, conf’’ (r, s), is defined as

follows: (1) conf’’ (r, r) = conf (r, any ascendant of r) = 0; (2) If r and s are distinct

brothers, conf’’ (r, s) = 1 if the father is not an ordered set; else, conf’’ (r, s) = the

relative distance from r to s = the number of steps needed to jump from r to s in the

ordering, divided by the cardinality-1 of the father; (3) conf’’ (r, s) = 1 + conf’’(r,

father_of(s)). § This is like conf for hierarchies formed by sets, except that there the

error between two brothers is 1, and here it is a number ¢ 1. Example: in the list

Temp, conf’’ (icy, cold) = 1/5, while conf’’ (icy, burning) = 5/5.

     The rest of the paper will derive results for conf; those for conf’ and conf’’ can be

similarly derived.

3.2 The set of values that are equal to another, up to a given confusion

A value u is equal to value v, within a given confusion e, written u =e v, iff conf(u,

v) ¢ e (It means that value u can be used instead of v, within error e). § Example: If v

= lemon (Figure 2), then (a) the set of values equal to v with confusion 0 is {lemon};

(b) the set of values equal to v with confusion 1 is {citric lemon}; (c) the set of values

5 These triangular parts would result to be equal for ultrametric distance. Thus, ultrametrics

represents a context-looseness measure in this case.
6 Number of elements of E that are in r and that also occur in s / number of elements of E that

are also in r = relative popularity or percentage of s in r.



equal to v with confusion 2 is {plant citric pine lemon}. Notice that =e is neither

symmetric nor transitive.

3.2.1 Queries

Objects possessing several properties (or variables), some of them perhaps hierarchi-

cal variables, can best be stored as rows of a table in a relational database. We now

extend the notion of queries to tables with hierarchical variables,7 by defining the set

S of objects that satisfy predicate P within a given confusion e.
P holds for object o with confusion e, or P holds for o within e, iff (1) if P is

formed by non-hierarchical variables, iff P is true for o; (2) for pr a hierarchical vari-

able and P of the form (pr = c), iff for value v of property pr in object o, v =e c (if the

value v of the object can be used instead of c with confusion e); (3) if P is of the form

P1 Ù P2, iff P1 holds for o within e or P2 holds for o within e; (4) if P is of the form

P1 Ø P2, iff P1 holds for o within e and P2 holds for o within e; (5) if P is of the form

×P1, iff P1 does not hold for o within e. §
Example 1 (refer to hierarchies H1 and H2 above): Let the predicates be:  P = (lives_in

= USA) Ù (pet = cat),  Q = (lives_in = USA) Ø (pet = cat),  R = × (lives_in = Span-

ish_Speaking_Island); and the objects be  (Ann  (lives_in USA) (pet snake)),  (Bill

(lives_in English_Speaking_Island) (pet citric)),  (Fred  (lives_in USA) (pet cat)),

(Tom  (lives_in Mexico) (pet cat)),  (Sam  (lives_in Cuba) (pet pine)). Then we have

the following results (Table 2):

Table 2. How the predicates P, Q and R of example 1 hold for several objects.

P holds within e for: Q holds within e for: R holds within e for:

e = 0 Ann, Fred, Tom Fred Ann, Bill, Fred, Tom

e = 1 Ann, Fred, Tom Fred, Tom Ann, Fred, Tom

e = 2 Ann, Fred, Tom, Sam Ann, Fred, Tom Nobody

3.2.2 The smallest e for which P(o) is true

How close is Tom to be like Ann in Example 1? Ann lives in the USA and her pet is a

snake, while Tom lives in Mexico and his pet is a cat. When we apply S = (lives_in =

USA) Ø (pet = snake) to Tom, we see that S starts holding for e=1. The answer to

“How close is Tom to Ann?” is 1. Notice that this is not a symmetric property.

     Ann is close to Tom starting from e=2; that is, (lives_in = Mexico) Ø (pet = cat)

does not hold for Ann at e=1, but it starts holding for her at e=2. This defines the

“closeness to”.

Object o e-fulfills predicate P at threshold e, if e is the smallest number for which P

holds for o within e. § Such smallest e is the closeness of o to P. § It is an integer

number defined between an object and a predicate. The closer is e to 0, the “tighter” P

holds. Compare with the membership function for fuzzy sets.

7 For variables that are not hierarchical, a match in value means conf = 0; a mismatch means

conf = ¤



3.3 Confusion between variables (not values) that form a hierarchy

What could be the error in “Sue directed the thesis of Fred”, if all we know is “Sue

was in the examination committee of Fred”? Up to now, the values of a hierarchical

variable form a hierarchy (Cf. §1.1). Now, consider the case where the variables (or

relations) form a hierarchy. For instance, relative and brother, in a universe of kinship

relations E = {sister, aunt…}. Consider hierarchies H3 and H4: (H3) relative ´
{close_relative ´ {father mother son daughter brother sister} mid_relative ´ {aunt

uncle niece cousin} far_relative ´ {grandfather grandmother grandson  grand-

daughter grandaunt granduncle grandcousin grandniece} }, (H4) player ´
{socker_player ´ {John Ed} basketball_player ´ {Susan Fred} }.

     In hierarchy H3, conf (son, relative) = 0; conf (relative, son) = 2. We know that,

for object  (Kim  (close_relative Ed) (pet cat)), the predicate V = (close_relative Ed)

holds with confusion 0. It is reasonable to assume that W = (son Ed) holds for Kim

with confusion 1;8 that X = (relative Ed) holds for Kim with confusion 0. Moreover,

since Ed is a member of hierarchy H4, it is reasonable to assume that for object  (Carl

(close_relative socker_player) (pet pine)) the predicate V holds with confusion 1, X

holds with confusion 1 and W holds with confusion 1+1 = 2. Thus, we can extend the

definition to variables that are members of a hierarchy, by adding another bullet to the

definition of §3.2.1, thus:

     If P is of the form (var = c), for var a variable member of a hierarchy, iff $ vari-

able var2 for which (var2=c) holds for o within e – conf (var, var2), where var2 also

belongs to the hierarchy of var.§ The confusion of the variables adds to the confu-

sion of the values. Example: For  (Burt  (relative basketball_player) (pet cat)), V

holds with confusion 1+2=3, W with confusion 2+2=4, and X with confusion 0+2=2.

3.4 Similarity for values in different hierarchies and in different ontologies

When v1 belongs to a hierarchy H1 and v2 to another hierarchy H2, both with the same

element set E, it is best to construct an ontology OU from E, and then to use it to

measure the similarity sim’(v1, v2), as follows: sim’ (cU, dU) for two concepts be-

longing to the same ontology OU, is defined as the 1/(1 + length of the path going

from cU to dU in the OU tree). § sim’ is defined for concepts, not for symbolic values.

     Also, for concepts cA, dB belonging to different ontologies OA, OB, we define:

sim’’ (cA, dB) when dB is not the most similar concept in OB to cA Í OA, is equal to

s1s2, where s1 = sim (cA, OA, OB) [sim gives the similarity between cA and its most

similar concept cB in OB; sim also finds cB], and s2 = sim’ (cB, dB). §

3.5 Comments and summing-up

     It is worth pausing at this point to look again at ideas of similarity, dissimilarity

(confusion) and distance as they apply to a set E. It is difficult in practice to set up a

8 We are looking for a person that is a son of Ed, and we find Kim, a close relative of Ed.



partial order if the number of elements x, y, z... of E is large, and if it is possible it is

difficult to make this order without running the risk of generating contradictions. In

fact, the only practical way to establish a partial order is to define a numerical func-

tion of similarity or dissimilarity (confusion) that can be computed in terms of the

attributes of every element of E: the similarity µ(x,y) will be greater the more closely

x resembles y; the dissimilarity (confusion) ɚ(x,y) will be smaller the more closely x

resembles y. The same partial order can be generated by any of an unlimited number

such functions. Some dissimilarity functions, however, may not be distances (Cf.

§§3.1-3.4). However, we can make simple transformations of ɚ(x,y) without affecting

the corresponding partial ordering [12, 13] and loss the context. Our point is that it is

not necessary to do (more arguments in [7]).

     Summing-up the analysis presented in previous sections, we can emphasize:

1) Attempting to define a distance on hierarchies of symbolic values to measure

closeness between hierarchical elements and hold its partial (total) order, we can lose

the context of a problem under consideration (§3.1, Table 1).

2) When the context (semantics) of a problem is considered, by expressing the simi-

larity function in terms of the data attributes, we can overcome it (§3.1 and [7] [9]).

3) Such approach finds the set of values that are equal to another up to a given confu-

sion (§3.2) as well as the closeness of an object to the predicate. Similarity functions

for values in different hierarchies (or ontologies) can be defined (§3.4 and [7]).
4) Hierarchies are simpler than ontologies, although very useful. They are easier to

understand, and the extensions to searches, queries and imperfect answers are

straightforward (§3.2-3.3 and [7]). Ontologies promise longer mileage, although they

are more complex to understand, to implement, and to apply. For instance, Bib-

lioDigital is a recent development that uses for document classification and indexing

a rich taxonomy, like an ontology, but with confusion properties, like a hierarchy

[14].

4 Some Applications to Linguistic Analysis9

     Quasihierarchies and recursive structures have been used in [1] for linguistic

analysis of Russian and English texts, verses translation, and computer program

comments (fogware). Clasitex [2] is a program that tells us the themes of an article

written in Spanish or English. It uses the concept tree, and a word (not in the tree)

suggests the topic of one or more concepts in the tree.

     Recent computational linguistics researches can be linked to our topic as follows.

     Information in mostly used WordNet is organized around logical groupings called

synsets. Each synset consists of a list of synonymous words or collocations (e.g.,

“fountain pen”, “take in”), and pointers that describe the relations between this synset

and other synsets. A word or collocation may appear in more than one synset, and in

more than one part of speech. The words in a synset are logically grouped such that

they are interchangeable in some context. Two kinds of relations are represented by

9 We limited these to WordNet due to the page limit. More applications and examples in NLP

and several other areas of AI can be found in [7] [9] [15].



pointers: lexical and semantic. Lexical relations hold between word forms; semantic

relations hold between word meanings. These relations include (but are not limited

to) hypernymy/hyponymy, antonymy, entailment, and meronymy/holonymy. Nouns

and verbs are organized into hierarchies based on the hypernymy/hyponymy relation

between synsets. Additional pointers are used to indicate other relations [5].

     Five different proposed measures of similarity or semantic distance in WordNet

were experimentally compared by examining their performance in a real-word spell-

ing correction system [8]. It was found that Jiang and Conrath's measure gave the best

results overall. That of Hirst-St-Onge seriously over-related, that of Resnik seriously

under-related [10], and those of Lin and of Leacock-Chodorow fell in between.

     Note that all the measures except of Hirst and St-Onge are similarity (not related-

ness) measures considering only the hyponymy hierarchy of WordNet.

     Thus, the measures herein proposed can be compared for at least that hierarchy

(§3). Moreover, we shall attempt to compare Hirst-St-Onge’s measure and the meas-

ure of §3.4 on overall WordNet structure, maybe, by using the same methodology as

in [8]. Other issue that can be addressed by our approach is the possibility provided

by the definitions of §3.2 for another evaluation method besides those in [8]. Yet

other issue is a search for explanation of difference in performance of the “looking

arithmetically identical” Jiang-Conrath's and Lin’s measures [8]. The prompt is that

both measures should be seriously embedded into WordNet context by the interaction

procedure of [11]. Our future research will be concerned with these issues. These

issues will also be addressed in the now-developing project “Precision-controlled

retrieval of qualitative information.” We also invite the CL community to test our

measures in existing linguistic data bases thus providing some sort of validation.

5   Conclusion

The notions of hierarchy and hierarchical variable make it possible to measure the

confusion when a value is used instead of another. This makes a natural generaliza-

tion for predicates and queries. The notions were introduced and developed for arbi-

trary hierarchies formed by sets, but they can be extended to bags and lists too.

     The concepts given herein have practical applications, since they mimic the man-

ner in which people process qualitative values and disambiguate senses (an interest-

ing procedure is [16]). Some examples are given.
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